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TABLE 3.5 COMPARISON OF ERRORS IN ADAMS-BASHFORTH METHODS

Y ==y 10)=11t=5

h Second order Third order Fourth order v Fifth order
2-8 138850—10 —393711 —-12 115388—13 —344260—15
2-¢ 344884 —11 —487010—13 710535—15 —105524-16
2-7 859472 —12 —605583—-14 440792 —16 —326583—18
2-8 214530—12 —754999-15 27447117 —101563—-19

y ==y4,r0 =11t=35
 h Second order Third order‘ Fourth order Fifth order
L2 568533 —10 —-365723-11 345730—12 —427887—13
2- 141718—10 —460309—12 222750—13 —143096—14

2-? 353759 ~11 —577419—13 14139214 —462985—16

2-8 883718—12 —723062—14 89064316 — 14725117
=—t (y+»%),30) =1Lt =5
h Second order Third order Fourth order Fifth order

2-5 100382—12 ~--946960—14 900407—15 —795755—16

2-¢ 240987—13 —112385—14 52452916 —228893 17
-7 591872—14 ~136871—15 316472—17 —685903—19
2-8 146752—14 —168876—16 194334 —18 —208970—20
TABLE 3.6 COMPARISON OF ERRORS IN NYSTROM METHODS
Y ==330=1t=75

h Second order Third order Fourth order Fifth order
2-3 370653 —09 245941 —09 188803—08%8 353071—06
2-8 477957—-10 177666 - 10 116657—09 245409—-06
2-7 619175—11 11867911 121595—10 182088 - 05
2-8 817258 —12 844988 —13 235654—11 —180580—05

y' =—y'9 )"(0) = l’t =35

h Second order Third order Fourth order Fifth order
2-8 519885—09 489842—09 327484—08 246166—06
2-¢ 710399—10 376276 —10- 198742—09 291459 —07
27 978744 —11 260210—11 88425011 205047—08
2-8 14118511 170325—12 12829312 —628150- 09

- ' =—t(y4y), ¥0) = 1,t =5

h Second order Third order Fourth order Fifth order
2-8 —-788635—06 —603084-+-69 —122600+50 —562878+69
2-8 —483239—-07 —154901 —05 —766248-+-49 —5025704-69
2-7 —299164—08 —960616—06 —301542+69 —392004 + 69
2-8 — 182068 —09 233003—06 —328154—-05 —409594 + 69




102 NUMERICAL SOLUTIONS
3.3 IMPLICIT MULTISTEP METHODS

In the preceding section we have expressed y..; in terms of previously
calculated ordinates and slopes. A formula similar to (3.11) or (3.13), which
involves the unknown slope y, . , on the right hand side, can be obtained if
we replace f (¢, y) in (3.6) by a polynomial which interpolates f (¢, y) at tasy,
luy -, tutkyy foOr an integer k > 0. Let us assume that f (¢, y) has k+1-
continuous derivatives. The Newton backward difference formula which
interpolates at these k+ 1 points in terms of u = (t—1t,)/h is given by

Pe Gt hi) = furg+u=1) Pfors+ Lo 2 fo
R (u—1) u(u+}c)!~--(u+k—2) P fuss
+ (u-1) u(u(-li-_:_)l--)-!(u%-k"l) Bkt fED (£)
= 2o () it (11 )@

(3.14)
Substituting (3.14) into (3.6), we get

Hirss) = ¥t )+ ]' [ £ (1)) rsm

-3

(L5 oo

or Ko = Win)+h X, 80 7™ furrk TiS) (3.15)
1
where ng=wa| (-ipn (1176 @O
1 - 1 _

3 = L(—nm( o )du (3.16)
Neglecting 7,4} in (3.15), we get

yoss = yacrth B 8D 7 fon (17
where & = 1+j '

1 .
8 =— = (14+P

) =_}f1-2- (1457 (1-2))
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; 1
) = — — 2 (1—7)2

1 ' .

(D = — —— i)2 - 38/ 2673
8 =— o5 (142 (19— 38j+27 - 6/°)
1
1440

If we replace the difference operator P™ fn+, in terms of the function values,
we obtain

3 =— (14j)? (27 —54j+45j2— 16/ +2j4)

k
Yntg = yn—l+hm20 8;‘(”ﬁ:-m+1 (318)

From (3.17) or (3.18) we can obtain a number of multistep formulas for
various values of j. It is obvious from (3.15) that the implicit multistep
methods are of one order higher than the corresponding explicit multistep
methods with the same number of previously calculated ordinates and
slopes.

3.3.1 Adams-Moulton formulas (j = 0)
Substituting j = 0in (3.17), we get

1 1 1
Ynt1 = Yath l:fn+1— > an+1"']—2 szn+1"§ 73 frst

19 27 ]
~ 930 P* fasr 1440 P° fas1ee

- The error term associated with truncation after kth p is

1
i = wn | (e LEDACERREEE L fen @ dn - 19)
0

Since the coefficient of f**1 (£) does not change sign in (0, 1), it is possible
to write (3.19) as
Tl;iol) = pkt+2 3&)' f&+D (&)
The coefficients 3" in the formula
: E
Ynr1 = Ynth 2;0 8:,50) Srome1
are given in Table 3.7.
3.3.2 Milne-Simpson formulas (j = 1)

These formulas can be obtained by substituting j == 1in (3.17) and we
find

» 1
Yary = Yn-yth ( 2fn+1—2l7ﬁ+|+—3— P? fat1+0P° fas
1 1
~9%0 P4 fos1 ~90 P farg= e ) (3.20)
The coefficients 8,(" of formula (3.18) are listed in Table 3.8.
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3.5 GENERAL LINEAR MULTISTEP METHODS

Let us consider the general linear multistep methods of the form
bt = @Ynt@ynoyt oo T ARYn_k+
+h(boyy,  +by,t oo bRV, y) (3.26)

k k
or Yy = Zlaiyn-lﬂ"l'h ‘goblyl,._i.;.]

Symbolically, we can write (3.26) as
P(E) Yn—ksy—ho (E) y;.-],-“ =0
where p and ¢ are polynomials defined by
p(é) = £k —a gkl —ayf*2— ... —a
U(f) = bofk+b1§k_l+"'+bk

The above formula (3.26) can only be used if we know the values of the
solution y(t) and )’ (¢) at k successive points. These k values will be
assumed to be given. Further, if by = 0, the resulting equation is called
an explicit or predictor formula because y,4; occurs only on the left hand
side of the formula. In other words, y.+; can be calculated directly from
the right hand side values. If by # 0, the equation is referred to as an
- implicit or corrector formula since y,4; occurs in both sides of the equation.
In other words the unknown y.4+; cannot be calculated directly since it is
contained within y,,,. We can also assume that the polynomials p(¢) and
o(¢) have no common factors since, otherwise, (3.26) can be reduced to an
equation of lower order. In order that the difference equation (3.26) should
be useful for numerical integration, it i3 necessary that (3.26) be satisfied with
good accuracy by the solution of the §ifferential equation y' = f(t, y), when
h is small for an arbitrary function f(z, y). This imposes restrictions on the
coefficients a; and b;.
With the difference equation (3.26), we associate the difference operator
L defined by

LIN0, K = Yor) =%, a9 (rsd)=h 3 b3/ turr)  (B20)

We assume that the function y(¢) has continuous derivatives of sufficiently
high order. Expanding y(fs-i+1) and y'(ts—s+;) in Taylor’s series, we have

W) = Y(ta)+(1=i)hy'(2,)
+£1_;!_")_2 Ry (t)+ ...+ Qi’l’ hPviPXt,)

Enetyy
+o | G as

in
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Ytnasd) = ¥+ =y e+ LSE 12y ()

+ o o)

fn_l+;

! (tnt41=5)P"1y0t+i)(s) ds

(p—1)

tn

_F

Substituting in (3.27), we get
L[y(r), h] = Coy(tn)+Cihy'(ta)+Cah*y" (tn)+ .-
+ Coh?y Pt + T

E
where Co = l—_Z} a
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(3.28)

1 k , 1 E ,
Co = ar[l-;_‘.l a!(l_l)']"(q'____l)_!“_g b(1-i)t,

qg=1,2,..

thyy
To= | | Conmomperrns as
ta

ta- i+

- ;: a [ {tatir— SYPYP0(s) ds

tasy
—hp K bo(tnyy —5)P~1yP+(s) ds
’ﬂ

’n_.l-f‘

k
—-hp ‘El b, I (t""'*’l—s)p_l.}’g;“)ds
ta

s P

:' (3.29)

DEFINITION 3.1 The difference operator (3.27) and the associated linear

multistep method (3.26) are said to be of order p if, in (3.28)
Co=Ci=C=..=Cy=0and Cpy; # 0

(3.30)

Thus for any function y(r) € C**? and for some nonzero constant C,.,

we have
| L[y(r), h] = = Cputh?*'y(7 5" +0(h#+2)

where Cp1y/o(1) is called the error constant.

(3.31)

In particular, L[y(¢), 4] vanishes identically when )(¢) is a polynomial
whose degree is less than or equal to p. We now introduce the following

definitions.
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DEFINITION 3.2 The linear multistep method (3.26) is said to be consis-
tent if it has order p > 1.

. DEFINITION 3.3 The linear multistep method (3.26) is said to satisfy the
root condition if the roots of the equation p(¢) = 0 be inside the unit circle
in the complex plane, and are simple if they lie on the circle.

We shall now use the definitions of order, consistency, and root condi-
tion to determine the parameters a; and b; in the linear multistep method
(3.26).

3.5.1 Determination of a; and b;

Equation (3.31) holds good for any function y(r) € C#+2, The constants
C; and p are independent of y(¢). These can thus be determined by a parti-
cular case y(t) = ¢!, and substituting it in (3.31) we obtain

L[(¢!, h] = etru1i—ajetn— ... — ak etr—++t
—h(bo etr+1+by etr+ ...+ by etrts)

= — Cpyy hPH! et 0(h?+2)
Simplifying we get
LI¢t, h] = [(e¥—aye® Dk — ... — ay)— h(boe*h-+bye®~Dh+ ... +-bi)] ef-tia
= — Cpyy h?t! etr+0 (hP*2)
or p(e") — ho(e*) = — Cpy hPH1+0 (hP+2)

Putting e® = £, as h—0, £—1, the above equation becomes
p(€)—(log €)o(€) = — Cpyy (6= 1)PH1H0((6 —1)P*2) (3.32)

or ) —al8) === Couy (€= DPHO(E = 1P (3.33)
Equations (3/5.32) and (3.33) provide us with the methods for determining p(£)
or a(¢) for maximum order if o(€) or p(€) is given.

If o(£) is specified, (3.32) can be used to determine a p(¢) of degree k such
that the order is at least k. The (log £) 6(£) can be expanded as a power
series in (€—1) and the terms up to (¢ — 1)* can be used to find p(§). If, on
the other hand, we are given p(£) we can use (3.33) to determine o(£) of
degree < k such that the order is at least k+1. The p(£)/log £ is expanded

,as a power series in (£—1), and terms up to (£ — 1)* are used to get o(¢).
" For example, a few choices of the polynomial p(§) and the resulting poly-
nomials o(¢) which give the well-known methods are as follows:

Adams-Bashforth Methods
p(€) = €71 (£—1) and a(€) of degree k—1
k=1
o(§)= ¢ T ya(l =€)
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where‘ 'ym-l- 3 'y,,,_,+ o — I,m=0,1,2,..

m+l o=
Nystrom Methods
k(f) = ¢¥72(£2—1) and o(¢) of degree k—1 -
o(8) = 1 . 3 (17

where ')’m+ 3 ')'m—l+ +I71+1 Yo =

Adams-Moulton Methods
p(§) = €K1 (¢~1) and o(¢) of deérce k
o) = £ B ym(1-g1)
,m=20

where ' ym+—~ym 1+t —— _H'yo . o -‘

om=1,2, .. o
Milne-Simpson Methods
p(€) = £4-2(£2—1) and o(¢) of degree k
o= ¥ ya(l-£r

2,m=0 -

where Ym+— 2 Ym_y+ - +m+l Yo = -1,m=1
0,m=2,3,

As the number of coefficients in (3.26) is equal to 2k+1 we may expect that
they can be chosen so that 2k +1 relations of the type (3.30) are satisfied, in
which p is equal to 2k. However, the root condition to be satisfied by the
method considerably restricts this order.

We now state the fundamental theorem whlch specifies the maximum
order of a linear k-step method.

THEOREM 3.1 For any positive integer k although there exists a.consistent
method of order p = 2k, the order of a k-step method satisfving the root
condition cannot exceed k+ 2. If k is odd it cannot excecd k+ 1.
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Example 3.3 Let p(¢) = (£é—1) (§—A) where A is real and —1 €A < 1,

find o(§).
We have
p(§) _ ¢=DI1-N+(E-1]
log ¢ log (14+(§-1))
oe) = 1-2+ 5 -0+ -y
_1tA

32 (£-1P40((¢6-1)9
Note that for A 7 —1, the order is 3 and for A = —1, the order is 4.

3.5.2 Estimate of truncation error

We can write (3.29) as

’n-ﬂ.
1 R N
To= I K {(tas1—5)? = Ph boft,s —5)" "
fn—l+1
3 e .
+3 @t =) +ph biltaii= 5y} Y (s) ds
1 | £T%Y
= 1| e as
Tak4y
tu—l+l < s < tn l ?é 0
—_— timi41—§
where (thmtr1—S) = th <8 i=20
0 otherwise
Substituting u = (s—ta)/h, we get
hp+l :
T, = 7 S {(1 —u)?—p bo(1 —u)7™!
—k+1

E
+ l.g [a(1T—i—u)?+pb(1 —i—u)"'}} YO, +hu) du

Jrtt : .
S [ G) Yo (ta+-hu) du (3.34)
v, ,
The function G(u) is called the influence function. If G(u) does not change
sign over the interval of integraticn [—k+1, 1], then we may write (3.34) in

the form
1

&+ () j G(u) du (3.35)
—k+1

p+l
e
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where —k+1 < n < 1. But if the influence function G(u) does change sign
over [—k+1, 1], then the error cannot be expressed in the form (3.35),
although we may bound the error as

hP‘fl !
LIS Trivol | lew)a
—E+1

Example 3.4 Obtain a fifth order formula of the form
Y1 = @1Yn+a2Yn-1+@3Yn_3+agyn_y
Fh (boyy 1 +01y,+boy,_ )y

Express each coefficient in terms of a,. Calculate the explicit form of the
error term.

Expanding each term about #, in the Taylor. series and equating the
cofficients of 4° through A° to zero, we get

1 =a+a+tas+tas

1 =—02""203-3a4+b0+b|+b2

% =—;—(a2+4a3+9a4)+bo—b2

+ = L ca—80,-2700+-L (51p
6 — g (—a—8a ﬂ4+—5‘(o+ 2)
= L, 16as+81a)+ - (5 —p
24 T 24'\%Tibast8lag+- (b—by)

p—

1 1
™ = 5% (-;;,--32(1:,—243:z,)+574 (bo+b2)

1
The truncation error is given by
1

X3
T, =- —I G (u) y'© (tn+hu) du

5!
(u—1)5+5by (u—1Y*, 0<u<1
ay (u+1)5—5ba (u+1)4+
where G =|as (u+2)+a, (u+3)5, ' -1gu<0
a (u+2)5+ay, (u;I—3)5, -2 u< —1
as (u+3Y, -3<u< =2

The coefficients a; and b, may be obtained as
306a; = ~413a,+468, 34a; = 13a,~20
153a; =—5a,4-9, 34by = —ay+12
51by = 3la,+ 36, 34b; = 37a,-36
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This is a linear difference equation of order two with constant coefficients.
Its characteristic polynomial is

—-4£+(3+2h) =0
which has roots
En=2—4/(1=2%)
and & = 2+4/(1-2R)
The general solution of (3.37) may be written as
yu = Cy €n+Ca € (3.38)
where C; and C, are two arbitrary constants. Choosing the conditions
Yo=1 y»n=z
where z; is still unspecified, we obtain
= (én—2)[(§n—Em), C2 = (21— En)/(En—Ea)
We now study the asymptotic behaviour of ys ash — Oand n - oo
while nh = ¢ remains fixed. Let us choose y; = e*, which is the value of
the exact solution at ¢ = A, satisfying ]};To y1 = 1. Now we get

fm=1+h+ % 740 (7)
én = 3-h+0 (B)
En—En = 2v/(2—F)
z—n = & —¢n =-% B+0 (7Y
En—z) = Ep—e = 240 (R)
= M40 (h)
g, =3 (exp( —-—13— At )+0 (7))

where nh = ¢, fixed.
Therefore, the solution (3. 38) may be written as

= \/ =57 (exp ()+0(R) (2+0 (B)

—— 3N (ex ( )tt)+.07f (——71-’ 071-‘)
+2V12h<p @) (-5 B+o
As h — 0, we see that the first term converges to the exact solution exp (At).
The second term behaves asymptotically like

—-—é—- A g3 exp (—-;— At ) (3"/n®) as n — oo
Hence y, —— oo, The method (3.36) is not convergent for the initial value
problem y" = Ay, y(0) = 1. Next, we assume )y, = e"4h? and obtain a
numerical solution ¥ of (3.37) which behaves asymptotically like $s2
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exp (—Ar) (3*/n?) as n—> oo, nh = t fixed. We find y,~¥, - —oo as h—>0
while the perturbation 42 in y, also approaches zero. Therefore, Definition
3.4 cannot be satisfied for any h.

3.5.4 Other stability results

In order to discuss the stability in a quantitative way, we must define a
differential equation as well as the numerical method used in the approxi-
mate solution. The equation studied in this connection is the simple linear
first order differential equation

Y =2, y(to) =
where A may be a complex number. The exact solution for this equation at
t = t, is given by

Y (ta) = y (to) ™ =y (tp) (M) (3.39)
Ignoring the round-off errors, the computed solution satisfies
E k
Ynpy = Z‘. Q) Yuis 1 +HHA Z‘b bi Yn-iv (3.40)
tom | t=
The true solution satisfies
k k
Y(tnyy) = Ex ar ¥ (tags1)+hA ‘_E-obl Y (tne )+ Tn (3.41)

where T, is the local truncation error.
Subtracting (3.41) from (3.40) and substituting €x = y,—y (t»), we get

k k
€ty = 2| Qi €n_tp1+hA 20 bieniv1—Tn (3.42)
L] ()
or (p (E)—hAo (E)) €sks1+Tn = 0 (3.43)

This is a kth order, linear, nonhomogeneous, difference equation with
constant coefficients. If the estimates of ¢, ¢,, ..., ex_, are available and 7,
is known, the difference equation can be solved for all n. Let as assume that
T, is constant and is equal to 7. The solution of (3.43) will consist of a
particular solution plus a linear combination of the independent solution of
the homogeneous equation with T = 0. The homogeneous equation is

(p (E)=hAo (E)) €nksy = O (3.44)
We seek the solution of (3.44) in the form »
€y = Af" (345)

where £ is to be determined and A4 is a constant. Substituting (3.45) in (3.44),
we get '

A(p(§)—hAo(§)) £rk+1 = 0
or p(é)—hAa(€) = 0 (3.46)
The general solution of the difference equation (3.43) for distinct roots can
be written as

€ = 4 lf;‘h +A2£gh+ vee +Ak§?"+

T
. m (3.47)
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The interval of absolute stability is listed in Table 3.10.

TABLE 3.10 INTERVAL OF ABSOLUTE STABILITY ON REAL LINE

k 1 2 3 4 5

Adams-Bashforth methods

(8,0) -2 —1.33 —0.55 -0.3 -0.2

Adams-Moluton methods

-] - —= -6 =30 -18

The linear multistep methods having the interval of absolute stability
(—oo, 0) are called A-stable methods. Here, we have | £ | < 1,7 = 1(1)k.

DEFINITION 3.8 A linear multistep method when applied to the differen-
‘tial equation of the form y’ = Ay and A is a (complex) constant with nega-

tive real part is called A-stable if all solutions of (3.26) tend to zero, as
n > oo,

The region of stability is shown in Figure 3.2.

i s

///// 7k e

Fig. 3.2 Stability region

We now state the main result about 4-stable linear multistep methods.

THEOREM 3.6 The order p, of an A-stable linear multistep method cannot
exceed 2 and the method must be implicit.
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If we use the trapezoidal formula or the second order Adams-Moulton
method

h ’ ’
Ynt1 = ynt 35 (Vop1 T0) (3.52)

to approximate y' = Ay, then Equation (3.52) becomes
2=h) Yy —(2+h) yn = (3.53)
The characteristic Equation of (3.53) is given by
Q-mé-Q+h) =0
The solution of the difference Equation (3.53) can be written as
2+h \*
Yn = al ( 2-1-;; )
The root £ is shown in Figure 3.3.

From Figure 3.3, it is obvious that the trapezoidal formula is stable for
all values of A. Similarly, we can show that the backward Euler method

Ynt1 = Ynth y;+|

is also stable for all values of A.
Thus, the trapezoidal and backward Euler methods are 4-stable.

Backward Euler Method

Trapezoidalmetho

-4 -3 -2 -1 0

Fig. 3.3 Roots of trapezoidal and backward Euler methods

The A-stable linear multistep methods are very useful for integrating stiff
systems of ordinary differential equations. Unfortunately, the class of A-
stable linear multistep methods is rather small. A natural weakening of the
stability requirement is to demand that the absolute stability condition
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The value r = 5 does not give eleventh order method. There are no twelfth
order and higher order stiffly stable multistep methods of this type.

-0.6 50 100 150 200 250

Fig. 3.5 Locus of ¢ (¢)/a(¢), £ = exp(ig), 6€ [0, 2x]

DEFINITION 3.10 The linear multistep method (3.26) is said to be_ relati-
vely stable if
I 6]" I g I §lh|:j = 2’ 3» vy k

The region of relative stability is defined to be a set of points in the M-plane
for which the method is relatively stable.

It may be pointed out here that absolute stability does not mean relative
stability, because we may have

Ifﬂ'l < 1,j= l, 2, u.,’kbut ] flh' < l f]’l,!j= 2’ 3, tccy k

To illustrate the difference between absolute and relative stabilities, let us
apply the third order Adams-Moulton method

h,.. .
y"+l = y’l+1_2—(5yn+| +8yn—y”_]) (3'54)
to the initial value problem 3’ = Ay, ¥(to) = yo. Equation (3.54) becomes
5 2 h
(1-37 ) puni—(14+-2- Pt =0 (3.55)
where i = Ap.

Equation (3.55) is a second order difference equation which will give one
extraneous solution. We are concerned with the rate of growth of this



